September 30, 2019

Instanceof Type Guards in N4JS

Statically typed languages like Java use instanceof checks to determine the type of an object at runtime. After a successful check, a type cast needs to be done explicitly in most of those languages. In this post we present how N4JS introduced type guards to perform these type casts implicitly. 

No error due to implicit cast in successful instanceof type guard

The example above shows that strict type rules on the any instance a causes errors to show up when accessing the unknown property pX. However, after asserting that a is an instance of X, the property pX can be accessed without errors. A separate type cast is unnecessary, since type inference now also considers instanceof type guard information.


Hover information on variable access of a shows the inferred type

The resulting type is the intersection type of the original type (which is here any) and of all type guards that must hold on a specific variable access (which is here only type X). Keeping the original types any or Object is not necessary and could be optimised later. In case the original type is different, it is necessary to include it in the resulting intersection type. The reason is that the type guard could check for an interface only. If so, property accesses to properties of the original types would cause errors.


Re-definition of a type guarded variable

Two distinct differences between type guards and type declarations are (1) their data flow nature and (2) their read-only effects. Firstly, when redefining (in the sense of the data flow) a variable, the type guard information gets lost. Consequently, subsequent accesses to the variable will no longer benefit from the type guard, since the type guard was invalidated by the re-definition. Secondly, only the original type information is considered for a redefinition. That means that the type guard does not change the expected type and, hence, does not limit the set of types that can be assigned to a type guarded variable.


Further examples for instanceof type guards in N4JS

Data flow analysis is essential for type guards and has been presented in a previous post. Based upon this information, type information for each variable access is computed. Since also complicated data flows are handled correctly, such as in for loops or short circuit evaluation, type guard information is already available in composed condition expressions (see function f3 and f5 above). Aside from being able to nest instanceof type guards (see function f4 above), they also can be used as a filter at the beginning of a function (see function f6 above) or inside a loop: Negating a type guard and then exiting the function or block leaves helpful valid type guard information on all the remaining control flow paths.

by Marcus Mews

August 29, 2019

Redux App Development and Testing in N4JS (Chess Game Part 2)

In large applications, Redux - an implementation of Flux architecture created by Facebook - is often used to organise application code by using a strict data flow in one direction only. Redux is UI agnostic, and can be used in conjunction with any UI library. As a continuation of our chess game tutorial with React, we show how to extract the entire program state out of React components, store it with Redux, and test it with N4JS. The full tutorial is available at eclipse.org/n4js and the sources can be found at github.com/Eclipse/n4js-tutorials.


The first part of the chess game tutorial discussed how to develop a chess game app with React and JSX in N4JS. We have stored the program state - which for instance contains information about the locations of all chess pieces - in the state of the React components directly. As applications become larger, however, the mix of program state and UI makes the application hard to comprehend and difficult to test. To address these issues, we extract the program state from the UI components in the second part of the tutorial.

When using React with Redux, we store the application state in Redux store instead of the state of React components. As a result, React components become stateless UI elements and simply render the UI using the data retrieved from the Redux store. In a Redux architecture, data flows strictly in one direction. The diagram below graphically depicts the action/data flow in a React/Redux app.

Strict data flow of flux architecture application


The action/data flow in the diagram can be roughly understood as follows:
  • When a user interaction is triggered on the React component (e.g. button clicked, text field edited etc.), an action is created. The action describes the changes needed to be updated in the application state. For instance, when a text field is edited, the action created may contain the new string of the text field.
  • Then the action is dispatched to the Redux store whereby the Redux store stores the application state, usually as a hierarchical tree of state.
  • The reducers take the action and the current application state and create an updated application state.
  • If the changes in the application state are to a certain React component, they are forwarded into the component in form of props. The change in props causes the component to re-render.

In the second part of the tutorial we further elaborate on the interaction of React and Redux and migrate the original chess non-Redux app. The tutorial explains the role of the reducer, and how the game state is stored and maintained in the Redux store. Based on storing the game using Redux, the tutorial shows how to test the game application with the N4JS test library Mangelhaft, by for instance checking that valid move destination squares are updated after a chess piece was selected.

Note that the way of testing the game logics is completely UI-agnostic and no React components are involved at all. This is thanks to the decoupling of game logics from UI with the help of Redux.


by Minh Quang Tran

July 16, 2019

React App Development in N4JS (Chess Game Part 1)

React is a popular JavaScript library created by Facebook widely used for developing web user interfaces. In this post we introduce a tutorial on how to develop a chess game based on React, JSX and N4JS. The full tutorial is available (and playable) at eclipse.org/n4js and the sources can be found at github.com/Eclipse/n4js-tutorials.


Chess game implemented in N4JS with React

The chess game app implements the following requirements:
  • When the chess application is started, a chess board of 8x8 squares shall be showed containing 16 white pieces and 16 black pieces in their initial positions.
  • A player in turn shall be able to use the mouse to pick one of the pieces that she/he wants to move. A picked piece shall be clearly recognisable. Moreover, to aid players, especially beginners, whenever a piece is picked, all possible valid destination squares shall be visually highlighted as well.
  • In addition to the game board, there shall be a game information area that shows which player is in turn. Moreover, the game information area shall show a complete history of the game protocolling each move made by the players. As a bonus, jumping back to a previous state of the history shall be possible.

In the tutorial you will learn how to use npm, webpack and React to develop a web application with N4JS and the N4JS IDE. Most of the tutorial will elaborate on specific parts of the implementation and explain for example the graphical representation of the chess board and chess pieces, and how to use React to model the UI. Also, it will explain the game logic, i.e. how possible moves for the different piece types are computed, how the turn history is maintained, and how the end of the game (i.e. a win situation) is detected. In the end, the tutorial will make suggestions on how to improve the chess game e.g. by adding support for the en passant move.

Have fun with implementing this game!

by Minh Quang Tran

March 22, 2019

Automated rename refactoring in N4JS IDE

Refactoring is probably one of the most important tools for us, software developers since we constantly need to change the structure of the code to improve the code quality or to prepare the code for new features etc. The most used refactoring operation is arguably rename refactoring. Find and replace could be used for renaming but the risk of renaming unrelated names is pretty high.

N4JS IDE provides a powerful way of automatically renaming a definition and all its references with a comparable user experience as rename refactoring of Eclipse Java Development Tool (JDT).  The slogan is: I want to rename this thing, do it for me however you like but please in a safe manner so that I can move on! This will exactly be your experience with rename refactoring in N4JS IDE.

Simple rename example

Let's have look at a simple example to see how rename refactoring works in N4JS IDE in action. Assume that we have an N4JS file with the following content.


When the cursor is at A of the constructor new A()and we press Cmd + Shift + R to rename A to B, the rename refactoring suggests that it would rename A to B at 3 different locations. After entering the new name B and pressing enter, the class A and all its usages are renamed to B, fully automatically :-)

Name conflicts detection 

Renaming an element may cause name conflicts. The rename refactoring in N4JS IDE provides comprehensive checks for detecting name conflicts. If the new name would cause name conflicts, the rename refactoring is disallowed.

In the example above,  renaming class A to class C would cause a name conflict because in the script scope the name C already exists. The rename refactoring provided by N4JS IDE can recognize this conflict and shows an error message.



In a large code base, these checks are a true life saver. Imagine having to manually verify these kinds of name conflicts across hundred of files.

Additionally, N4JS IDE's rename refactoring is capable of recognizing name conflicts when renaming

  • members of classifier
  • formal parameters of a function or method
  • field of a structural type
  • enum literal
  • local variable, constant
  • global variable, constant
  • etc.

Rename composed members

N4JS language supports composed elements. Renaming a composed element is somewhat special.




In this example, ab.foo is a composed member because ab is of the intersection type A & B which is composed of both A and B. Renaming ab.foo would rename all the definitions that contribute to the creation of ab.foo as well as all references of these definitions.

Preview of changes

When you start rename refactoring operation, you have the possibility to see the preview of changes before actually executing the operation.



Note that the preview shows the changes in each file in a very recognizable manner.

Undo changes

After the rename refactoring, if you feel regret and would like to undo the operation, simply press Cmd + Z. The undo will undo all the changes in affected files previously done by the rename refactoring.

Current limitations

As the time of this writing, the rename refactoring in N4JS IDE still has several limitations:
  • Renaming alias is not supported
  • Checking name conflicts do not take into account shadowing

By Minh Quang Tran